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a b s t r a c t

Extracting and fusing discriminative features in fingerprint matching, especially in distorted fingerprint

matching, is a challenging task. In this paper, we introduce two novel features to deal with nonlinear

distortion in fingerprints. One is finger placement direction which is extracted from fingerprint

foreground and the other is ridge compatibility which is determined by the singular values of the affine

matrix estimated by some matched minutiae and their associated ridges. Both of them are fixed-length

and easy to be incorporated into matching score. In order to improve the matching performance, we

combine these two features with orientation descriptor and local minutiae structure, which are used to

measure minutiae similarity, to achieve fingerprint matching. In addition, we represent minutiae set as

a graph and use graph connect component and iterative robust least square (IRLS) to detect creases and

remove spurious minutiae close to creases. Experimental results on FVC2004 DB1 and DB3 demonstrate

that the proposed algorithm could obtain promising results. The equal error rates (EER) are 3.35% and

1.49% on DB1 and DB3, respectively.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Fingerprints are graphical patterns of ridges and valleys on
the skin surface of fingertips (Maltoni et al., 2009), and the
uniqueness of a fingerprint can be determined by the overall
pattern of ridges and valleys as well as the local ridge minutiae
(ridge ending and ridge bifurcation). Fingerprint recognition has
been studied for many years and lots of algorithms have been
proposed to improve the performance of automatic fingerprint
identification system (AFIS). Minutiae-based matching algorithms
are the most popular approaches to fingerprint recognition since
it is widely believed that minutiae are the most discriminating
and reliable features. Given two minutiae sets, minutiae matching
is a complex combinatorial problem, because two fingerprints
may be translated, rotated and especially nonlinear distorted with
respect to each other, and both minutiae sets may suffer from
false, missed, and displaced minutiae. Many researchers have
tried to exploit assistant features to reduce the ambiguity
between minutiae. Typical assistant features include ridge
feature, local minutiae structure and local orientation feature.

Ridge feature is the first local feature introduced in fingerprint
matching (Jain et al., 1997). Jain et al. (1997) utilized ridge
information as an aid for alignment. In this method, for each

minutiae pair (one from the input fingerprint, the other one from
the template fingerprint), if their associated ridges were similar
the input minutiae set was rotated and translated based on this
minutiae pair. Minor modifications of this algorithm have been
proposed to establish minutiae correspondence and reduce the
computational cost (He et al., 2003; Luo et al., 2000). He et al.
(2006) proposed a global comprehensive similarity-based finger-
print matching algorithm, in which minutia-simplex, including a
pair of minutiae as well as their associated ridges, was employed
to ensure positional constraint. This method obtained a good
trade-off between matching performance and computational
expense. Wang et al. (2007) proposed a feature called PolyLines
to extract ridge information. Three transformation-invariant
features were calculated for each ridge sampling point and ridge
similarity was based on these features. However, all the features
above seem not excellent in case of severe distortion. Ridge
counts among matched minutiae pairs (Sha et al., 2006) are high
discriminating feature and robust to distortion, but they are
difficult to reliably extract in the presence of noise, and then are
rarely used in automated systems (Yager and Amin, 2004).

Local minutiae structure, which consists of neighboring
minutiae, is one of the most discriminative features used in
fingerprint matching. Jiang and Yau (2000) and Jea and Govindar-
aju (2005) utilized k closest neighboring minutiae points to
generate a fixed-length local minutiae feature for each minutia
and the similarities between minutiae were based on these
features. An advantage of the fixed-length feature is that the
similarity between two feature vectors can be computed very fast.
But it is sensitive to the order of the neighboring minutiae. Ratha
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et al. (2000) and Chen et al. (2006) adopted similar strategies by
defining a feature vector which characterized the rotation and
translation invariant relationship between a minutia and its
neighbors circled within a radius. Feng (2008) extended this
approach by transforming the input minutiae structure to deal
with the occlusion problem and giving a specific formula to
measure the similarity between two minutiae structures. Cao
et al. (2009) modified this formula by taking the position and
direction of the neighboring minutiae into account to make the
minutiae structure similarity measure more accurate.

Orientation feature, which characterizes the ridge flow in
fingerprints, is one of the fundamental statistical feature. It plays
an important role in automatic fingerprint identification system
(AFIS) process, since it is essential for not only fingerprint
enhancement (Hong et al., 1998) but also fingerprint pattern
classification (Maio and Maltoni, 1996) and fingerprint matching.
The approaches presented in Tico and Kuosmanen (2003) and
Tong et al. (2005) built transformation-invariant orientation
feature vectors, which comprised the orientation distances of
the sampling points surrounding a minutia and the minutia itself.
The difference between them is the sampling strategy. Wang et al.
(2007) proposed a feature called OrientationCodes, in which the
ROI was circularly tessellated through several bands and sectors,
and the orientation was estimated by least square error. Gu et al.
(2006) and Qi et al. (2005) viewed the orientation field as a global
feature and combined it with minutiae to match fingerprints.

However, there are still difficulties in fingerprint matching.
Local features, such as orientation descriptor and local minutiae
structure, are less sensitive to nonlinear distortion which is small
in local region. Adding more local features can reinforce the
individuality of fingerprints. However, fingerprints from different
fingers may possess similar minutiae, orientation and ridge
features in the overlapped region. Fig. 1 shows an example of a
pair of fingerprints from FVC2004 DB3. In Fig. 1(c) the minutiae in
the overlapped region possess similar local features. In this paper
we proposed a novel feature called finger displacement direction
which is extracted from fingerprint foreground to reduce the false
matching resulted from similar local feature.

Ridges are easily interrupted by noise and local deformation
will distort the ridge shapes largely. The length of a ridge may
vary in different fingerprints and long ridge has larger variation
than short ridge. Therefore, it is hard to select parameters to
measure the similarity between ridges. And conventional ridge
feature is hard to improve distorted fingerprint matching. A novel
feature called ridge compatibility is proposed to deal with this
problem. Different from convectional method, ridge compatibility

is calculated by the singular values of the affine matrixes, which
are estimated by pairwise ridge sampling points associated with
matched minutiae.

In addition, we propose a graph-based algorithm to remove
spurious minutiae resulted from creases since spurious minutiae
degrade heavily the performance of fingerprint matching algo-
rithms (as shown in Fig. 2). Then we combine the proposed two
novel features with orientation descriptor and local minutiae
structure to improve the matching performance. Experimental
results on FVC2004 DB1 and DB3, in which the distortion between
some fingerprints from the same finger is large, indicate that the
proposed algorithm obtains promising results. The equal error
rates (EER) are 3.35% and 1.49% on DB1 and DB3, respectively.
Both of them can obtain the third place in FVC2004 ranked
by EER.

The rest of the paper is organized as follows: Section 2 gives
feature extraction and fingerprint representation. Section 3
presents the minutiae similarity calculation, minutiae pairing
and matching score computation. The experimental results are
reported in Section 4 and conclusions are drawn in Section 5.

2. Feature extraction

In this section, we will present the strategy to remove spurious
minutiae close to creases and extract the features used by the
matching algorithm. The orientation field of a gray-scale finger-
print image is computed by the approach proposed by Bazen and
Gerez (2002). Foreground of fingerprint image is segmented by
the approach in Chen et al. (2004). Then the method proposed by
Hong et al. (1998) is used to enhance the image and obtain the
thinned ridge map. Minutiae set M¼ fmi ¼ ðxi; yi; yiÞg

n
i ¼ 1 is

detected by Hong et al.’s (1998) method, where n denotes the
number of detected minutiae, xi yi and yi denote the x coordinate,
y coordinate and the direction of minutia mi, respectively.

2.1. Spurious minutiae removing

From Fig. 2, we can obtain that the spurious minutiae resulted
from a crease have the following characters: (i) The spurious
minutiae from the same side of a crease possess similar direction.
They are approximately distributed on a line and the distance
between two neighboring minutiae is approximately equal to the
ridge width. (ii) The nearest two spurious minutiae from different
sides of a crease have nearly opposite directions, and the distance
between them is approximately equal to the width of the crease.

Fig. 1. An example of two fingerprints with similar local feature but different finger placement direction. (a) Skeleton image of 38_1.tif from FVC2004 DB3, (b) skeleton

image of 89_1.tif from FVC2004 DB3, (c) registration of (a) and (b).
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Based on these two observations we propose a graph-based
approach to remove the spurious minutiae close to the creases.
The detailed procedure is described as follows:

Step 1: An undirected graph G¼ ðV ; EÞ is constructed by the
minutiae set M. The vertex set V of the graph G consists of all
the minutiae. The edge attribute eijAf0;1g is binary, denoting the
absence or presence of an edge. If eij ¼ 1, it means that there is an
edge connecting the i th and the j th minutia, which satisfy one of
the following conditions :

dLenðmi;mjÞoDThr1 and jdyðyi; yjÞjoyThr1; ð1Þ

dLenðmi;mjÞoDThr2 and jdyðyi; yjÞj4p�yThr2; ð2Þ

where DThr1;DThr2; yThr1 and yThr2 are thresholds, dLenðmi;mjÞ is
Euclid distance defined in Eq. (3) and dyðy1; y2Þ is directional
distance function defined in Eq. (4):

dLenðmi;mjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ

2
þðyi�yjÞ

2
q

; ð3Þ

dyðy1; y2Þ ¼

y1�y2 if jy1�y2jrp;
y1�y2�2p if ðy1�y2Þ4p;
y1�y2þ2p otherwise:

8><
>: ð4Þ

Step 2: A crease usually results in many spurious minutiae. And
for each of them, it is probable that there exists a minutiae
adjacent to it. Therefore, based on the graph representation in
Step 1 minutiae which are close to a crease are expected to be
connected. The disjoint-set data structures (Cormen et al., 2001) is
adopted to determine the connected components of the undir-
ected graph G. A connected component in which there are more
than Ns vertices (Ns ¼ 7 in our experiments) is supposed to be
close to a crease and then it is referred to as a crease component.
Fig. 3(a) marks the three crease components.

Step 3: Since the spurious minutiae resulted from a crease are
expected to line up along the crease, we use a line to model the
crease. For each crease component C, the line parameters are
expected to minimize the following objective function:

EðC; a; bÞ ¼
X

mi AC

rððyi�a � xi�bÞ=sÞ; ð5Þ

where a is the slope of the line, b is the intercept, rðuÞ is a robust
loss function, monotonically nondecreasing as a function of u, and
s is the error scale. Function (5) is minimized using IRLS (Holland
and Welsch, 1977), with weight function wðuÞ ¼ r0ðuÞ=u. In this

paper, we choose Beaton–Tukey biweight function (Holland and
Welsch, 1977) as the objective function. In detail, the weight
function is

wðuÞ ¼
1�

u

4

� �2
� �2

; jujr4;

0; juj44:

8><
>: ð6Þ

Fig. 3(b) gives three estimated lines.
Step 4: If the number of the minutiae which belong to the

crease component and close to the line is still larger than Ns, these
minutiae close to the line are deemed to be spurious and removed
from the minutiae set. Fig. 3(c) illustrates the minutiae with their
direction after removing spurious minutiae.

It is difficult to reliably extract minutiae from the input
fingerprint, especially from the low quality fingerprint images.
Therefore, the method proposed by Feng (2008) is used to classify
a minutia as reliable or unreliable one, which is used in minutiae
similarity estimation and matching score computation.

2.2. Global feature extraction

In this section, we present an approach to extract finger
placement direction. For most fingerprints, we can judge the
finger placement (including position and direction) by its overall
ridge pattern. However, it is hard to extract a feature related with
the finger placement direction from the ridge pattern. When
touching the finger tip against the plain surface of an acquisition
sensor or sweeping it against the narrow stripe, the three-
dimensional elastic surface of a finger is projected to generate a
flat fingerprint image. This process introduces nonlinear distor-
tions that ridge pattern may be warped largely. However, the
acquired fingerprint seems to be a long shape no matter where
the direction of the force is, because a finger can be viewed as a
long cylinder. Therefore, ridge distortion has little influence on
the finger displacement direction.

Hence we try to directly extract finger displacement direction
from the shape of the fingerprint. The method described in
Freemam and Shapira (1975) is modified to achieve this task. We
shall proceed in three steps. First, the border of fingerprint
foreground is sampled and represented as a plane curve. Then,
Graham’s, 1972 algorithm, which is an important sequential
algorithm used for determining the convex hull of a point set in
the plane, is adopted to determine its minimum-perimeter convex

Fig. 2. An example of a fingerprint with creases. (a) Original fingerprint (FVC2004 DB3 100_1.tif), (b) skeleton image of (a), (c) the minutiae with their direction given on

the skeleton image.
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polygon that encases the given plane curve (i.e. convex hull).
Finally, it is only necessary to test the set of rectangles having one
side collinear with the polygon’s edges for the rectangle with least
area, and the minimum-area rectangle that encases this convex
polygon is selected. Since a finger is generally placed upward, the
upward direction of the longer side of the rectangle is deemed as
the finger placement direction. Fig. 4 illustrates the extraction
process. To extract robust and accurate feature, finger placement
direction can be defined only when the rectangle satisfies the
condition that the length of the rectangle should be larger than
1.2 times of the width. Fig. 5 gives an instance that does not
satisfy this condition.

3. Fingerprint matching

3.1. Minutiae similarity

Local features of a minutia describe the characteristics in its
neighborhood and are less sensitive to nonlinear distortion. They
can be used to find potential matches in another minutiae set and
calculate matching score. In this section, we combine orientation
descriptor and local minutiae structure to measure the similarity
between minutiae.

The local orientation-based descriptor proposed by Tico and
Kuosmanen (2003) is invariant to rotation and translation and it
has been reported to have better performance than previous ones.

The descriptor comprises the orientation information at some
sampling points around the minutiae point in a circular pattern.
The circular pattern consists of L concentric circles of radii
rl ð1r lrLÞ and Kl sampling points are equally sampled on the l th
circle. The minutiae descriptor is invariant to rotation and
translation. In this paper, the parameters suggested by Tico and
Kuosmanen (2003) is adopted, which is (ðr0 ¼ 27;K0 ¼ 10Þ,
ðr1 ¼ 45;K1 ¼ 16Þ, ðr2 ¼ 63;K2 ¼ 22Þ, ðr3 ¼ 81;K3 ¼ 28Þ). Let
p¼ fak;lg and q¼ fbk;lg be two minutia descriptors. Here, we also
use p and q to represent corresponding minutiae, without risk of
ambiguity. The orientation descriptor similarity ðOSÞ between p

and q is computed as

OSpq ¼ 1=K
XL

l ¼ 1

XKl

k ¼ 1

sðLðak;l;bk;lÞÞ; ð7Þ

where Lðy1; y2Þ is the orientation distance between y1 and y2, and
sðxÞ denotes a similarity value with respect to the angle.

Local minutiae structural similarity in this section is measured
by our previous work (Cao et al., 2009). For the completeness, we
describe the process in brief. Suppose p is a minutia in the
template fingerprint and q is a minutia in the input fingerprint,
the similarity calculation process can be divided into two stages:
(1) minutia p and its neighbors are mapped to the coordinate
system of q, (2) minutia q and its neighbors are mapped to the
coordinate system of p. In order to deal with the distortion, the

Fig. 3. Illustration of spurious minutiae removing: (a)connected component of the minutiae graph, (b) detected creases, (c) minutiae with their direction after spurious

minutiae removing.

Fig. 4. Illustration of finger placement direction extraction, (a) original fingerprint (1_6.tif from FVC2004 DB1), (b) foreground of (a), (c) convex hull of (b), (d) the

minimum-area encasing rectangle for (c), (e) fingerprint with finger placement direction.

K. Cao et al. / Journal of Network and Computer Applications 33 (2010) 258–267 261
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neighboring radius of the target minutia should be larger than
that of the mapped minutia.

In the stage (1), let Nðp; rÞ ¼ fpig
np

i ¼ 1 denote the set of the
neighboring minutiae circled p within r radius, Nðq; rþDrÞ ¼

fqjg
nq

j ¼ 1 denote the set of the neighboring minutiae circled q within
rþDr radius and T represent the corresponding rigid transforma-
tion from p to q . Each minutia pi in Nðp; rÞ is mapped to p0i using T.
Then the contribution of p0i with respect to the minutia p is
computed as

Cpi
¼max

qj

f ðdLenðp0i; qjÞ; Len1; Len2Þ � f ðdyðp0i; qjÞ;y1; y2Þ ð8Þ

where Len1 and Len2 are two distance thresholds, y1 and y2 are
two direction distance thresholds, and the function f is defined as

f ðx; th1; th2Þ ¼

1 if xrth1;

0 if x4th2;

x�th1

th2�th1
otherwise:

8>>><
>>>:

ð9Þ

If Cpi
is lager than 0, pi is regarded as a matching minutia.

In the stage (2), we define another two neighboring structures:
Nðq; rÞ and Nðp; rþDrÞ, the meaning of which is similar as stage 1.
We use the same symbol T to represent the relative rigid
transformation from q to p. Each minutia qjANðq; rÞ is mapped
to q0j using T. The contribution of qj to the minutia q is calculated
as follows:

Cqj
¼max

pi

f ðdLenðpi; q
0
jÞ; Len1; Len2Þ � f ðdyðpi; q

0
jÞ; y1; y2Þ: ð10Þ

The similarity based on local minutiae structure between p and q

is measured using the following formula:

MSpq ¼
1þ
P

pi ANðp;rÞCpi

Mpþbias
�

1þ
P

qj ANðq;rÞCqj

Mqþbias
; ð11Þ

where Mp and Mq represent the number of minutiae of Nðp; rÞ and
Nðq; rÞ that should be matched (Feng, 2008) and bias is a
parameter. Minutia m is regarded as a minutia that should be
matched, if m0 is a matched minutia or it is a reliable minutia on
the foreground of the other fingerprint.

The similarity based on local minutiae structure captures local
minutiae pattern while orientation descriptor captures local ridge
flow. Therefore, these two features are independent with each
other. Two similarity functions are combined to measure the
similarity between the minutiae pair by product rule:

Spq ¼OSpq �MSpq: ð12Þ

3.2. Minutiae pairing

Let fpkg
NI

k ¼ 1 and fqlg
NT

l ¼ 1 denote two minutiae sets from input
and template fingerprint, respectively, and s¼ fSklg

NI ;NT

k ¼ 1;l ¼ 1 denote
the set of similarity degrees between two minutiae sets. However,

a minutia may exhibit a large similarity degree with more than
one minutia. To determine the order in which to insert
correspondences, the similarity degree set s is normalized by
the method proposed by Feng (2008), formally,

NSpq ¼
Spq � ðNTþNI�1ÞPNI

k ¼ 1 Skqþ
PNT

k ¼ 1 Spk�Spq

: ð13Þ

Then minutiae pairs are sorted in decreasing order of NS and the
top K minutia pairs are used as the reference pair candidates. For
each of them, a matching attempt is performed: (1) two
fingerprints are aligned using the relative translation and rotation
between the reference pair; (2) the greedy matching algorithm
proposed by Feng (2008) is used to establish the correspondences
between two minutiae sets; (3) then the score of this attempt is
calculated based on the correspondences. The maximal score of
these attempts is selected as the matching score.

3.3. Matching score computation

A conventional way to calculate matching score for a minutiae
point pattern matching system is based on the following formula
(Jain et al., 1997):

score¼ n2=ðNI � NT Þ; ð14Þ

where NI and NT represent the numbers of minutiae in input and
template minutiae sets, respectively, and n is the number of
matched minutiae in both sets. Bazen and Gerez (2003) claimed
that using 2n=ðNtþNqÞ to compute matching score will give better
results. However, both of these two types cannot deal with low-
quality fingerprint images and small overlap region. To solve
these problems, Tico and Kuosmanen (2003) modified the formula
(14) by replacing the number of matched minutiae with the total
similarity of orientation descriptor between matched minutiae set
and replacing the numbers of minutiae in two fingerprints with
the numbers of minutiae in the common region. Sheng et al.
(2007) proposed to use the following matching rate score:

score¼
2
Pn

k ¼ 1 Spkqk

SNIþSNT
; ð15Þ

where fðpk;qkÞg
n
k ¼ 1 is the matched minutiae pair set, SNI and SNT

are the number of minutiae that should be matched for input and
template fingerprints, respectively. However, we think all the
measures are not accurate enough. In this section, we try to
incorporate fingerprint placement direction and ridge compat-
ibility into the matching score computation in order to improve
the algorithm performance.

3.3.1. Global feature similarity

Suppose that the finger placement directions are yI and yT for
input and template fingerprints, respectively. For each matched

Fig. 5. An example that its finger placement direction cannot be extracted. (a) original fingerprint (17_1.tif from FVC2004 DB1), (b) foreground of fingerprint and its convex

hull, (c) the minimum-area encasing rectangle for (b).
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minutiae pair ðpk; qkÞ, the directional distances ðb1
k ;b

2
k Þ between

the minutia direction and its corresponding finger placement
direction are utilized to describe the matching status, where
b1

k ¼ dyðypk
; yIÞ and b2

k ¼ dyðyqk
;yT Þ. Let bk ¼ jdyðb

1
k ;b

2
k Þj denote the

matching difference between the k th matched minutiae pair.
Then the average of the matching differences is estimated as

bdiff ¼
1

n

Xn

k ¼ 1

bk: ð16Þ

In the case that one of the compared fingerprints does not have
finger placement direction, the value of bdiff is set as zero. This is
because we cannot calculate its global similarity and assume that
the global features are perfectly matched. The global similarity is
calculated as follows:

Sg ¼ f ðbdiff ;bThr1
;bThr2

Þ; ð17Þ

where f is the fuzzy membership function given in Eq. (9), bThr1

and bThr2
are two thresholds.

3.3.2. Ridge compatibility

Another feature incorporated into the matching score is the
ridge information. Once the minutiae correspondences are
established, their associated ridges are established too. However,
ridges are easily impacted by noise, dir, nonlinear distortion and
so on. Therefore, it is hard to determine the parameters used in
conventional ridge similarity function. In this section, we propose
a feature, called ridge compatibility, based on singular value
decomposition (SVD) to measure the ridge similarity. Using the
minutiae pairing algorithm stated in Section 3.2, the matched
minutiae pairs between input and template fingerprints can be
obtained. The corresponding sampling points are considered to be
matched if their associated minutiae are matched. If the number
of sampling points for one minutia in a pair is different from the
second minutia of the pair, we set the smaller number as the
number of matched sampling points (Chen et al., 2006). Note that
the first sampling point of each ridge refers to the minutia, and
the ridge corresponding to a bifurcation serves as a virtual ridge in
the middle of two nearest ridges surrounding the direction of the
bifurcation (Wang et al., 2007). Suppose that PI ¼ ðxi; yiÞ

ns

i ¼ 0 is a
ridge sampling point set in input fingerprint, PT ¼ ðui; viÞ

ns

i ¼ 0 is the
matched ridge sampling point set in template fingerprint and ns is
the number of matched ridge sampling points. The affine model is
adopted to model the transformation between two point sets. The
affine transformation of a input point Xi ¼ ðxi; yiÞ

T to a template
point Yi ¼ ðui; viÞ

T can be written as

Yi ¼ A � Xiþt; ð18Þ

where t is 2� 1 translation vector, and A is a 2� 2 transformation
matrix which denotes the affine rotation, scale, and shearing.
These parameters are supposed to minimize the following
objective function:

ObjðA; tÞ ¼
1

ns

Xns

i ¼ 1

JA � Xiþt�YiJ; ð19Þ

where ns is the number of the sampling points. Based on singular
value decomposition (SVD), the matrix A can be decomposed as
follows:

A¼U �L � VT ¼
cosðjÞ sinðjÞ
�sinðjÞ cosðjÞ

" #
�

l1 0

0 l2

" #

�
cosðyÞ �sinðyÞ
sinðyÞ cosðyÞ

" #
; ð20Þ

where l1 and l2 are the singular values of A, U and V are 2� 2
unitary matrices, j and y are angles related to U and V. From the

decomposition it is easy to see that U and V are only related with
rotation while the singular values are related with the scale
transformation. Therefore, the singular values are expected to
close to 1 for genuine matches. In order to balance the efficiency
and matching accuracy, we select two matched minutiae pairs
(ðqi; piÞ and ðqj; pjÞ) and their associated ridge sampling points to
estimate the affine matrix Aij and calculate corresponding singular
values (lij;1 and lij;2) each time. Then, we define the ridge
compatibility ðRCÞ by the singular values, formally,

RC ¼
2

nðn�1Þ

Xn

i ¼ 1

Xn

j ¼ iþ1

ððlij;1�1Þ2þðlij;2�1Þ2Þ: ð21Þ

The similarity based on ridges ðSrÞ are calculated as follows:

Sr ¼ exp �
RC

s2

� �
; ð22Þ

where s is a parameter which controls the width of the ‘‘bell’’
curve.

In order to achieve the better classification performance, the
three parts are combined by product rule to give the matching
score. Note that in order to reduce false acceptance rate (FAR), the
matching score is set as zero if matched minutiae number is less
than 4.

4. Experimental results

Since our work is to deal with the problem of distorted
fingerprint matching, the evaluation of the proposed algorithm is
conducted on FVC2004 (2004) DB1 and DB3, in which, the
distortion between some fingerprints from the same finger is
obvious. In this section, two sets of experiments are conducted to
evaluate spurious minutiae removing and the overall performance
of the proposed algorithm. The performance evaluation protocol
used in FVC2002 (2002) has been adopted. Each sample is
matched against the remaining samples of the same finger in
genuine match. In imposter match, the first sample of each finger
is matched against the first sample of the remaining fingers.
Hence, there are total 2800 genuine tests and 4950 imposter tests
in each database.

4.1. Spurious minutiae removing

An experiment is conducted on FVC2004 DB3 to evaluate the
validity of the spurious minutiae removing process. The matching
score is calculated by using Eq. (15). Fig. 6 shows the receiver
operating curves (ROCs) plotting FMR vs. FNMR of the algorithm
without removing spurious minutiae and the algorithm with
removing spurious minutiae. The performance indices (EER,
FMR100, FMR1000 and ZeroFMR) are reported in Table 1. The
results show that the proposed strategy can greatly reduce false
acceptance rate and then improve the algorithm’s performance.

4.2. Overall performance

Firstly, we give the parameters used during the matching
process: the sampling interval (10 pixels), the thresholds used in
(17) (bThr1 ¼ p=6 and bThr2 ¼ 5p=12), the threshold used in (22)
ðs¼ 1Þ. And all the parameters used in two databases are exactly
the same. To evaluate the overall performance of the proposed
algorithm, we have compared four relevant algorithms (A,B,C,D)
on the databases of FVC2004 DB1 and FVC2004 DB3. Algorithm A
uses the conventional method (15) to calculate matching score.
Algorithm B fuses the matching rate score (15) and global
similarity (17). Algorithm C fuses the matching rate score (15)
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and ridge compatibility (22). And algorithm D is the proposed
approach that combined three similarity measures by product
rule. To valid the proposed algorithm, we also compare our
algorithm with other recent published fingerprint matching
results. Algorithms E and F are both from Wang et al. (2007).
The difference lies that Algorithm E only uses OrientationCode
while Algorithm F fuses OrientationCode and PolyLine, where
PolyLine is the latest feature of ridge. Algorithm G is from Tong
et al. (2008).

The ROC curves of four algorithms (Algorithms A–D) are
plotted in Fig. 7(a) and (b). The algorithm performance indices
(EER, FMR100, FMR1000 and ZeroFMR) of above seven algorithms
are reported in Tables 2 and 3. From ROC curves, we can see
that algorithm D always obtains the best results, which proves
that incorporating finger placement direction and ridge
compatibility can effectively reduce false match rate (FMR) and
then improve the matching accuracy. More details are analyzed as
follows:

(1) Adopting the finger placement direction leads very good
matching performance on FVC2004 DB3. In this database,
these fingerprints were acquired through the thermal sweep
sensor ‘‘FingerChip FCD4B14CB’’ by Atmel. The size of the
image is 300� 480 pixels with a resolution of 512 dpi. Hence,
most of the fingerprints are slightness and we can obtain their
finger placement directions accurately. Therefore, the FMRs
associated with the global feature (Algorithms B and D) drop
down quickly with respect to their FNMRs. We take the
comparison in Fig. 1 as an example. The matching score of
these two fingerprints resulted from Algorithm A is 0.0406
while the matching score threshold at EER point is about

0.0384. With the global feature (Algorithm B), the matching
score of these two fingerprints is 0.0234 while the matching
score threshold at EER point is about 0.0366. The EER of
Algorithm B on FVC2004DB3 is dropped to 1.91% from 2.59%
resulted from Algorithm A.

(2) The ridge compatibility significantly improves the matching
performance on FVC2004 DB1 and FVC2004 DB3. The EERs of
Algorithms A and C on FVC2004 DB1 and DB3 are 3.99% vs.
3.40% and 2.59% vs. 1.96%, with average 0.61% decrease. In
Algorithm F (Wang et al., 2007) the fusion method that fuses
OrientationCodes and PolyLines performs a little better than
only OrientationCodes-based method (Algorithm E). On
FVC2004 DB1 and DB3, the differences between the EERs of
the fusion method and OrientationCodes-based method are
within 0.2%, which indicates PolyLines is hard to improve
matching performance largely on large-distorted fingerprints.
Compared with PolyLines, our SVD-based ridge compatibility
seems much more robust to nonlinear distortion. The
phenomena can be interpreted from their viewpoints of
representing feature. In the conventional ridge-based meth-
ods, one or several features (Jain et al., 1997; He et al., 2003;
Wang et al., 2007) are calculated for each sampling point and
the differences between the matched sampling points are
utilized to calculate ridge similarity. However, the number of
ridge sampling points may vary because of noise and the
features of the sampling point far away from minutia may
possess large variation because of distortion. It is hard to
select parameters to measure the similarity between ridges.
In the proposed algorithm, ridge similarity is a function
of the ridge compatibility which is based on singular value
decomposition of affine matrix. There are mainly two
advantages of the ridge compatibility: (1) Affine matrix has
and only has two singular values, and both of them are
expected to be 1 for genuine matches. Hence it is easy to
select parameters to measure ridge similarity. (2) The more
the number of the sampling point is, the more accurate the
affine matrix is. The singular values have small variation even
when large distortion exists. Fig. 8 shows the probability
distribution of the value of RC in genuine match and imposter
match on DB1 and DB3. From Fig. 8, we find that RC in genuine
match follows exponent distribution and it has very good
classification performance. The average value of RC of genuine

Fig. 6. ROC curves of algorithms with and without removing spurious minutiae.

Table 1
Results of different algorithms.

Methods EER

(%)

FMR100

(%)

FMR1000

(%)

ZeroFMR

(%)

Without removing spurious

minutiae

2.56 5.18 13.21 16.18

With removing spurious

minutiae

2.59 4.18 7.75 13.61
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matches for DB1 and DB3 are 0.607 and 0.431, respectively.
This difference may indicate that the distortion of DB1 is
larger than DB3.

(3) The global feature is determined by the finger placement. It
does not have any relation with the patterns of ridges and
valleys on the skin surface. Therefore, the global feature and
the ridge compatibility can be considered to be independent
of each other. From the results on the two databases, the

decrease of EER of Algorithm D is approximately equal to the
sum of those of Algorithms B and C. On FVC2004 DB3, the
fusion algorithm also decreases the EER greatly. The EERs of
the fused strategy on DB1 and DB3 are 3.35% and 1.49%,
respectively. Both of them are lower than the methods
proposed by Wang et al. (2007) and Tong et al. (2008).
Moreover, the proposed algorithm can obtain the third place
in FVC2004 (2004) ranked by EER.

Fig. 7. ROC curves of different algorithms on FVC2004. (a) DB1, (b) DB3.

Table 2
Results of different algorithms over FVC2004 DB1.

Algorithm EER (%) FMR100 (%) FMR1000 (%) ZeroFMR (%)

A 3.99 7.25 14.79 22.68

B 3.93 6.61 14.68 22.68

C 3.40 5.82 11.79 17.89

D 3.35 5.57 11.79 17.89
E 7.68 13.46 27.11 –

F 7.49 14.5 24.29 –

G 7.47 – – –

Table 3
Results of different algorithms over FVC2004 DB3.

Algorithm EER (%) FMR100 (%) FMR1000 (%) ZeroFMR (%)

A 2.59 4.18 7.75 13.61

B 1.91 3.04 7.36 13.61

C 1.96 3.29 7.29 13.75

D 1.49 2.32 5.39 13.75
E 2.97 5.64 11 –

F 2.83 4.36 9.46 –

G 1.89 – – –
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(4) All the experiments are conducted on the same PC with Intel
Pentium 4 processor 3.4 GHz under Windows XP professional
operating system. All the fingerprint matching algorithms are
implemented using the Cþþ language. The average matching
times of Algorithms A, B, C and D on FVC2004 DB1 are 26.9,
27.0, 30.0 and 30.1 ms, respectively. The average matching
times of that four algorithms on FVC2004 DB3 are 31.6, 31.9,
35.1 and 35.2 ms, respectively. Local minutiae similarity
calculation is a time-consuming process and most of the
matching are spent on it. The average increase of matching
time between Algorithms B and A is 0.2 ms. Ridge compat-
ibility calculation involves least square estimation and SVD.
Therefore, it is much more time-consuming than global
similarity and its matching time increases average 3.3 ms.

5. Conclusion and future work

In this paper, we propose an effective approach to remove
spurious minutiae close to creases and introduce a global feature

called finger placement direction. Both of these methods are
designed to directly reduce false acceptance rate. Ridge compat-
ibility is measured by the singular values of the affine matrix
which is estimated by the ridges associated with the matched
minutiae. Experimental results indicate that the preprocessing
approach can remove most spurious minutiae resulted from
creases, and the two features are effective to improve the
matching performance. The equal error rates reach 3.35% and
1.49% on DB1 and DB3, respectively, and both of them can rank
the third place in FVC2004.

However, the FMR1000 and ZeroFMR of the proposed
algorithm are still high. We will resort to other features
especially global features (such as singular point and class
information) to reduce these indices. The proposed algorithm
can still not deal with large-distorted fingerprints because
it is very difficult to establish minutiae correspondences bet-
ween two fingerprints with large nonlinear distortion by
considering only rotation and translation transformation. Future
works may try to find a novel and effective approach to solve this
problem.

Fig. 8. Probability distribution of ridge compatibility on FVC2004 DB1. The part, where the value of RC is larger than 2, is cut off for better comparison. (a) DB1, (b) DB3.

K. Cao et al. / Journal of Network and Computer Applications 33 (2010) 258–267266



Author's personal copy
ARTICLE IN PRESS

Acknowledgments

This paper is supported by the Project of National Natural
Science Foundation of China under Grant nos. 60875018 and
60621001, National High Technology Research and Development
Program of China under Grant no. 2008AA01Z411, Chinese
Academy of Sciences Hundred Talents Program, Beijing Natural
Science Foundation under Grant no. 4091004, Scientific Databases
Program of the Chinese Academy of Sciences during the 11th Five-
Year Plan Period under Grant no. INFO-115-C01-SDB4-30.

References

Bazen A, Gerez S. Systematic methods for the computation of the directional fields
and singular points of fingerprints. IEEE Transactions on Pattern Analysis and
Machine Intelligence 2002;24(7):905–19.

Bazen A, Gerez S. Fingerprint matching by thin-plate spline modelling of elastic
deformations. Pattern Recognition 2003;36(8):1859–67.

Cao K, Yang X, Tian J, Zhang Y, Li P, Tao X. Fingerprint matching based on
neighboring information and penalized logistic regression. In: Advances in
biometrics, third international conference, ICB 2009. p. 617–26.

Chen X, Tian J, Yang X. A new algorithm for distorted fingerprints matching
based on normalized fuzzy similarity measure. IEEE Transactions on Image
Processing 2006;15(3):767–76.

Chen X, Tian J, Cheng J, Yang X. Segmentation of fingerprint images using linear
classifier. EURASIP 2004;4:480–94.

Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms, 2nd ed.
Cambridge, New York: MIT Press, McGraw-Hill; 2001. [Chapter 21].

Feng J. Combining minutiae descriptors for fingerprint matching. Pattern
Recognition 2008;41(1):342–52.

Freemam H, Shapira R. Determining the minimum-area encasing rectangle for
an arbitrary closed curve. Communications of the ACM archive 1975;18(7):
409–13.

FVC2002 /http://bias.csr.unibo.it/fvc2002/S, 2002.
FVC2004 /http://bias.csr.unibo.it/fvc2004/S, 2004.
Graham RL. An efficient algorithm for determining the convex hull of a finite

planar set. Information Processing Letters 1972;26(3):132–3.
Gu J, Zhou J, Yang C. Fingerprint recognition by combining global structure and

local cues. IEEE Transactions on Image Processing 2006;15(7):1952–64.

He Y, Tian J, Li L, Chen H, Yang X. Fingerprint matching based on global
comprehensive similarity. IEEE Transactions on Pattern Analysis and Machine
Intelligence 2006;28(6):850–62.

He Y, Tian J, Luo X, Zhang T. Image enhancement and minutiae matching in
fingerprint verification. Pattern Recognition Letters 2003;24(9–10):1349–60.

Holland P, Welsch R. Robust regression using iteratively reweighted least-squares.
Communications in Statistics Theory and Methods 1977;A6:813–27.

Hong L, Wan Y, Jain A. Fingerprint image enhancement: algorithm and
performance evaluation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 1998;20(8):777–89.

Jain A, Hong L, Bolle R. On-line fingerprint verification. IEEE Transactions on
Pattern Analysis and Machine Intelligence 1997;19:302–14.

Jea TY, Govindaraju V. A minutia-based partial fingerprint recognition system.
Pattern Recognition 2005;38:1672–84.

Jiang X, Yau WY. Fingerprint minutiae matching based on the local and global
structures. In: Proceedings of the 15th international conference on pattern
recognition, vol. 2, 2000. p. 1038–41.

Luo X, Tian J, Wu Y. A minutia matching algorithm in fingerprint verification. In:
Proceedings of the 15th international conference on pattern recognition,
vol IV, 2000. p. 833–6.

Maio D, Maltoni D. A structural approach to fingerprint classification. In:
Proceedings of the 13th international conference on pattern recognition, 1996.

Maltoni D, Maio D, Jain A, Prabhakar S. Handbook of fingerprint recognition, 2nd
ed. London: Springer; 2009.

Qi J, Yang S, Wang Y. Fingerprint matching combining the global orientation field
with minutia. Pattern Recognition Letters 2005;26:2424–30.

Ratha N, Pandit V, Bolle R, Vaish V. Robust fingerprint authentication using local
structural similarity. In: Fifth IEEE workshop on applications of computer
vision, 2000. p. 29–34.

Sha L, Zhao F, Tang X. Minutiae-based fingerprint matching using subset
combination. In: Proceedings of the 18th international conference on pattern
recognition, vol. IV, 2006. p. 566–9.

Sheng W, Howells G, Fairhurst M, Deravi F. A memetic fingerprint matching algorithm.
IEEE Transactions on Information Forensics and Security 2007;2(3):402–12.

Tico M, Kuosmanen P. Fingerprint matching using an orientation-based minutia
descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence
2003;25(8):1009–14.

Tong X, Huang J, Tang X, Shi D. Fingerprint minutiae matching using the adjacent
feature vector. Pattern Recognition Letters 2005;26(9):1337–45.

Tong X, Liu S, Huang J, Tang X. Local relative location error descriptor-based
fingerprint minutiae matching. Pattern Recognition Letters 2008;9:286–94.

Wang X, Li J, Niu Y. Fingerprint matching using orientationcodes and polylines.
Pattern Recognition 2007;40(11):3164–77.

Yager N, Amin A. Fingerprint verification based on minutiae features: a review.
Pattern Analysis and Applications 2004;7:94–113.

K. Cao et al. / Journal of Network and Computer Applications 33 (2010) 258–267 267


